汉诺塔非递归算法.我只是将盘子的数量等于2,3的情况代到网上别人给的算法中验证了一下,没有错。并没有证明算法的正确性。算法是否有效,有待大家证明。 GH:jH]u!V
M {T-iW"
include <iostream> uH- l%17
#include <stdlib.h> LR.<&m%~.
Fgh_9S9J
#ifdef _WIN32 A1>OY^p3%
using namespace std; 70tH:Z)"
#endif WX|`1b
qwgPk9l
static void hanoi(int height) j0evq+
{ dufu|BL|}
int fromPole, toPole, Disk; JL}_72gs
int *BitStr = new int[height], //用来计算移动的盘的号码 dV$gB<iS
*Hold = new int[height]; //用来存贮当前的盘的位置。hold[0]为第一个盘所在的柱号 Y;^l%ePuW
char Place[] = {'A', 'C', 'B'}; d K3*;
int i, j, temp; %^GfS@t
EGU
0)<
for (i=0; i < height; i++) SdxDa
{ hxd`OG<gF
BitStr = 0; kr:^tbJ
Hold = 1; a:IC)]j$_
} EPM-df!=
temp = 3 - (height % 2); //第一个盘的柱号 -Xm'dwm
int TotalMoves = (1 << height) - 1; 9oR@UW1
for (i=1; i <= TotalMoves; i++) ;1O_M9
{ PB`Y
g
for (j=0 ; BitStr[j] != 0; j++) //计算要移动的盘 xvl#w
{ x'>9d
BitStr[j] = 0; 4`]^@"{
} ]i ,{
BitStr[j] = 1; KD7dye
Disk = j+1; ]uJ"?k=
if (Disk == 1) {|_M
#w~&
{ *>'V1b4}
fromPole = Hold[0]; (WO]Xq<
toPole = 6 - fromPole - temp; //1+2+3等于6,所以6减去其它两个,剩下那个就是要移去的柱子 <~'"<HwtK
temp = fromPole; //保存上一次从哪个柱子移动过来的 Wk4s reB
} '+!1Y o'G
else suiS&$-E
{ s6v;
fromPole = Hold[Disk-1]; sF?TmBQ*
toPole = 6 - Hold[0] - Hold[Disk-1]; Jg\zdi:t
} hl (hJfp
cout << "Move disk " << Disk << " from " << Place[fromPole-1] 1&evG-#<:
<< " to " << Place[toPole-1] << endl; Gm.T;fc:
Hold[Disk-1] = toPole; >xYpNtEs
} 9gEwh<
} O/a4]r+_
]kRfB:4ED
J0\Fhe0'
uHvp;]/0\
lC("y'
::
int main(int argc, char *argv[]) #+HJA42
{ `nv~NLkl
cout << "Towers of Hanoi: " << endl OXSmt
DvJ
<< "moving a tower of n disks from pole A to pole B by using pole C" << endl; \lf;P?M^
cout << "Input the height of the original tower: "; [-k
int height; m^f0V2M_
cin >> height; ?o4C;
hanoi(height); 2%@4]
pW@Pt 3u
system("PAUSE"); wb5baY9
return EXIT_SUCCESS; `maKN \;
} ,+vy,<e&
R_ ,U Mt
Ug t.&IA
K'Tm_"[u
问题描述:有三个柱子A, B, C. A柱子上叠放有n个盘子,每个盘子都比它下面的盘子要小一点,可以从上 kmsb hYM)
eH3JyzzP,
到下用1, 2, ..., n编号。要求借助柱子C,把柱子A上的所有的盘子移动到柱子B上。移动条件为:1、一 &5spTMw8
ZQoU3AD;
次只能移一个盘子;2、移动过程中大盘子不能放在小盘子上,只能小盘子放在大盘子上。 AJ?r,!)
6YLj^w] %
算法要点有二: )72+\C[*~r
1、确定哪一个盘子要移动。有n个盘子的Hanoi塔需要移动2^n -1次,设m为n位的二进制数,则m的取值范 !&ayYu##{
nE&