"陷阱"技术探秘──动态汉化Windows技术的分析 3-s}6<0v1
>gtQw!
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。 $*[{J+t_
dBCbL.!
一、发现了什么? |BMV.Zi
笔者多年来一直从事Windows下的软件开发工作,经历了Windows 2.0 、 3.0 、3.1 ,直至Windows 95、NT的成长过程,也遍历了长青窗口、长城窗口、DBWin、CStar、RichWin等多个Windows汉化产品。从现在看来,影响最大也最为成功的,当推四通利方的RichWin;此外,中文之星CStar与RichWin师出一门,其核心技术自然也差不多。其对外宣传采用独特的"陷阱" 技术即动态修改Windows代码,一直是笔者感兴趣的地方。 ZBD;a;wx
EXEHDR是Microsoft Visual C++开发工具中很有用的一个程序,它可以检查NE(New-Exe cutable)格式文件,用它来分析RichWin的WSENGINE.DLL或CStar的CHINESE.DLL,就会发现与众不同的两点(以CStar 1.20为例): R_P}~l
&Jc_Fc(M
C:\CSTAR>exehdr chinese.dll /v -XoP ia2
.................................. pI`?(5iK6|
~.Ik#At
6 type offset target G*
%t'jX9
BASE 060a seg 2 offset 0000 wl=61Mb
PTR 047e imp GDI.GETCHARABCWIDTHS 6bc337b
PTR 059b imp GDI.ENUMFONTFAMILIES 1a0kfM$
PTR 0451 imp DISPLAY.14 ( EXTTEXTOUT ) UsVMoX^
PTR 0415 imp KEYBOARD.4 ( TOASCII ) #eP
LOR&q
PTR 04ba imp KEYBOARD.5 ( ANSITOOEM ) 2B~wHv
PTR 04c9 imp KEYBOARD.6 ( OEMTOANSI ) lkIn%=Z
PTR 04d8 imp KEYBOARD.134( ANSITOOEMBUFF ) z5\;OLJS,
PTR 05f5 imp USER.430 ( LSTRCMP ) `XTh1Z\
PTR 04e7 imp KEYBOARD.135( OEMTOANSIBUFF ) Upl6:xYrG
PTR 0514 imp USER.431 ( ANSIUPPER ) |rRO@18dA
PTR 0523 imp USER.432 ( ANSILOWER ) OY-w?'p?W
PTR 05aa imp GDI.56 ( CREATEFONT ) 6+rlXmd
PTR 056e imp USER.433 ( ISCHARALPHA ) F^aR+m
PTR 05b9 imp GDI.57 ( CREATEFONTINDIRECT ) 4] > ]-b
PTR 057d imp USER.434 ( ISCHARALPHANUMERIC )
`WEZ"5n
PTR 049c imp USER.179 ( GETSYSTEMMETRICS ) *TW=/+j
PTR 0550 imp USER.435 ( ISCHARUPPER ) KP;(Q+qTx
PTR 055f imp USER.436 ( ISCHARLOWER ) Huw\&E
PTR 0532 imp USER.437 ( ANSIUPPERBUFF ) }'"Gr%jf(
PTR 0541 imp USER.438 ( ANSILOWERBUFF ) 0x2!<z
PTR 05c8 imp GDI.69 ( DELETEOBJECT ) 7"X>?@
PTR 058c imp GDI.70 ( ENUMFONTS ) 4S0>-?{
PTR 04ab imp KERNEL.ISDBCSLEADBYTE F7m?xy
PTR 05d7 imp GDI.82 ( GETOBJECT ) ge3sU5iZ
PTR 048d imp KERNEL.74 ( OPENFILE ) >r/rc`Q
PTR 0460 imp GDI.91 ( GETTEXTEXTENT ) XhzGLYb~I`
PTR 05e6 imp GDI.92 ( GETTEXTFACE ) Rn%N&1
Ef
PTR 046f imp GDI.350 ( GETCHARWIDTH ) Ko>&)%))$X
PTR 0442 imp GDI.351 ( EXTTEXTOUT ) f67NWFX
PTR 0604 imp USER.471 ( LSTRCMPI ) }0hL~i
PTR 04f6 imp USER.472 ( ANSINEXT ) N<|$h5isq
PTR 0505 imp USER.473 ( ANSIPREV ) 2g{)AtK$#
PTR 0424 imp USER.108 ( GETMESSAGE ) vY|^/[x#B
PTR 0433 imp USER.109 ( PEEKMESSAGE ) z(uZF3
MjfFf} @
35 relocations l*b)st_p%
PQW(EeQ
(括号内为笔者加上的对应Windows API函数。) Gnm4gF!BI
第一,在数据段中,发现了重定位信息。 iL{M+Ic
第二,这些重定位信息提示的函数,全都与文字显示输出和键盘、字符串有关。也就是说汉化Windows,必须修改这些函数。 o;"OSp
在这非常特殊的地方,隐藏着什么呢?毋庸置疑,这与众不同的两点,对打开"陷阱"技术之门而言,不是金钥匙,也是敲门砖。 *=" 8?Z
jdeV|H} u
二、Windows的模块调用机制与重定位概念 }G46g#_6d>
为了深入探究"陷阱"技术,我们先来介绍Windows的模块调用机制。 Q "r_!f
Windows的运行分实模式、标准模式和增强模式三种,虽然这几种模式各不相同,但其核心模块的调用关系却是完全一致的。 `?\tUO2_T
主要的三个模块,有如下的关系: Wm'QP4`
·KERNEL是Windows系统内核,它不依赖其它模块。 Dz=k7zRg"
·GDI是Windows图形设备接口模块,它依赖于KERNEL模块。 Rr(* aC2P
·USER是Windows用户接口服务模块,它依赖于KERNEL、GDI模块及设备驱动程序等所有模块。 +!-~yf#RE
这三个模块,实际上就是Windows的三个动态链接库。KERNEL有三种系统存在形式:Kern el.exe(实模式)、Krnl286.exe(标准模式)、Krnl386.exe(386增强模式);GDI模块是Gdi.ex e;USER模块是User.exe。虽然文件名都以EXE为扩展名,但它们实际都是动态链接库。同时,几乎所有的API函数都隐藏在这三个模块中。用EXEHDR对这三个模块分析,就可列出一大堆大家所熟悉的Windows API函数。 h~U02"$
以GDI模块为例,运行结果如下: ~\nBjM2
C:\WINDOWS\SYSTEM>exehdr gdi.exe y@bcYOh3
pb60R|k
Exports: !;@_VWR
9ILIEm:
rd seg offset name 7DW]JK l
............ lor8@Qz
351 1 923e EXTTEXTOUT exported, shared data p_*M:P1Ma4
56 3 19e1 CREATEFONT exported, shared data ~d{.ng 4K
............ f"#m=_Xm
1xNVdI
至此,读者已能从Windows纷繁复杂的系统中理出一些头续来。下面,再引入一个重要概念——重定位。 :R6bq!
一个Windows执行程序对调用API函数或对其它动态库的调用,在程序装入内存前,都是一些不能定位的动态链接;当程序调入内存时,这些远调用都需要重新定位,重新定位的依据就是重定位表。在Windows执行程序(包括动态库)的每个段后面,通常都跟有这样一个重定位表。重定位包含调用函数所在模块、函数序列号以及定位在模块中的位置。 ^_I} x)i*@
例如,用EXEHDR /v 分析CHINESE.DLL得到: M/D)".;
6 type offset target B
(/U3}w-
kpwt]]e*
.......... hli|B+:m"
Oh.ZPG=
PTR 0442 imp GDI.351 *x~xWg9^
1RLY $M
.......... WlB'YL-`g
;P &y,:<m:
就表明,在本段的0442H偏移处,调用了GDI的第351号函数。如果在0442H处是0000:FFFF ,表示本段内仅此一处调用了GDI.351函数;否则,表明了本段内还有一处调用此函数,调用的位置就是0442H处所指向的内容,实际上重定位表只含有引用位置的链表的链头。那么,GDI. 351是一个什么函数呢?用EXEHDR对GDI.EXE作一分析,就可得出,在GDI的出口(Export)函数中,第351号是ExtTextOut。 6TWWlU^e
这样,我们在EXEHDR这一简单而非常有用的工具帮助下,已经在Windows的浩瀚海洋中畅游了一会,下面让我们继续深入下去。 5/[H+O1;
u/b7Z`yX}
三、动态汉化Windows原理 kID[#g'
我们知道,传统的汉化Windows的方法,是要直接修改Windows的显示、输入、打印等模块代码,或用DDK直接开发"中文设备"驱动模块。这样不仅工作量大,而且,系统的完备性很难保证,性能上也有很多限制(早期的长青窗口就是如此),所以只有从内核上修改Windows核心代码才是最彻底的办法。 (%CZ*L[9Z
从Windows的模块调用机制,我们可以看到,Windows实际上是由包括在KERNEL、GDI、US ER等几个模块中的众多函数支撑的。那么,修改其中涉及语言文字处理的函数,使之能适应中文需要,不就能达到汉化目的了吗? "Y`3DxXz
因而,我们可以得出这样的结论:在自己的模块中重新编写涉及文字显示、输入的多个函数,然后,将Windows中对这些函数的引用,改向到自己的这些模块中来。修改哪些函数才能完成汉化,这需要深入分析Windows的内部结构,但CHINESE.DLL已明确无误地告诉了我们,在其数据段的重定位表中列出的引用函数,正是CStar修改了的Windows函数!为了验证这一思路, 我们利用RichWin作一核实。 >>l`,+y
用EXEHDR分析GDI.EXE,得出ExtTextOut函数在GDI的第一代码段6139H偏移处(不同版本的Windows其所在代码段和偏移可能不一样)。然后,用HelpWalk(也是Microsoft Visual C+ +开发工具中的一个)检查GDI的Code1段,6139H处前5个字节是 B8 FF 05 45 55,经过运行Ri chWin 4.3 for Internet后,再查看同样的地方,已改为 EA 08 08 8F 3D。其实反汇编就知道,这5个字节就是 Jmp 3D8F:0808,而句柄为0x3D8F的模块,用HelpWalk能观察正是RichWin 的WSENGINE.DLL的第一代码段( 模块名为TEXTMAN)。而偏移0808H处 B8 B7 3D 45 55 8B E C 1E,正是一个函数起始的地方,这实际上就是RichWin所重改写的ExtTextOut函数。退出Ri chWin后,再用HelpWalk观察GDI的Code1代码段,一切又恢复正常!这与前面的分析结论完全吻合!那么,下一个关键点就是如何动态修改Windows的函数代码,也就是汉化Windows的核心——"陷阱"技术。 U;_[b"SW%
?q`0ZuAg\<
四、"陷阱"技术 \2[<XG(^
讨论"陷阱"技术,还要回到前面的两个发现。发现之二,已能解释为修改的Windows函数,而发现之一却仍是一个迷。 TG48%L
数据段存放的是变量及常量等内容,如果这里面包含有重定位信息,那么,必定要在变量说明中将函数指针赋给一个FARPROC类型的变量,于是,在变量说明中写下: m4K* <
FARPROC FarProcFunc=ExtTextOut; ,?UM;^
果然,在自己程序的数据段中也有了重定位信息。这样,当程序调入内存时,变量FarPro cFunc已是函数ExtTextOut的地址了。 75!9FqMZ}
要直接修改代码段的内容,还遇到一个难题,就是代码段是不可改写的。这时,需要用到一个未公开的Windows函数AllocCStoDSAlias,取得与代码段有相同基址的可写数据段别名, 其函数声明为: @ufo$?D
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); Z.L?1V8Q1
参数是代码段的句柄,返回值是可写数据段别名句柄。 foF19_2 ,
Windows中函数地址是32位,高字节是其模块的内存句柄,低字节是函数在模块内的偏移。将得到的可写数据段别名句柄锁定,再将函数偏移处的5个字节保留下来,然后将其改为转向替代函数(用 EA Jmp): 4!62/df
*(lpStr+wOffset) =0xEA; Gz
I~TWc+G
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。 vq*Q.0 M+
//源程序 relocate.c uxn)R#?
5F+APz7
#include <WINDOWS.H> e;bYaM4UX
#include <dos.h> %Kh4m7
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECTFAR*lpRect,LPCSTR lpStr, UINT nInt2, int FAR* lpInt); 8rZ!ia!
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); S|V4[ssB
typedef struct tagFUNC [./6At&|
{ }/dRU${!
FARPROC lpFarProcReplace; //替代函数地址 ubsSa}$q
FARPROC lpFarProcWindows; //Windows函数地址 #BVtL :x@
BYTE bOld; //保存原函数第一字节 tary6K9K+
LONG lOld; //保存原函数接后的四字节长值 ,y`CRlr:
}FUNC; h<<>3 A
FUNC Func={MyExtTextOut,ExtTextOut}; #mR4fst
//Windows主函数 Mk<Vydds
int PASCAL WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,int nCmdShow) lLq<xf
{ .%BT,$1K
HANDLE hMemCode; //代码段句柄 Mk 0+D#
WORD hMemData; //相同基址的可写数据段别名 8eIUsI.o
WORD wOffset; //函数偏移 +'@+x'/{^
LPSTR lpStr; h!@|RW&}qX
LPLONG lpLong; <^.=>Q0S\
char lpNotice[96]; }_tl n
hMemCode=HIWORD((LONG) Func.lpFarProcWindows ); `cz2DR-"
wOffset=LOWORD((LONG) Func.lpFarProcWindows ); KAA-G2%M
wsprintf(lpNotice,"函数所在模块句柄 0x%4xH,偏移 0x%4xH",hMemCode,wOffset); n>3U_yt6b
MessageBox(NULL,lpNotice,"提示",MB_OK); 5FVndMM#y
//取与代码段有相同基址的可写数据段别名 &K_)#v`|
hMemData=AllocCStoDSAlias(hMemCode); Tl]e%A`|
lpStr=GlobalLock(hMemData); $yDWu"R8
lpLong=(lpStr+wOffset+1 ); vgt]:$
//保存原函数要替换的头几个字节 m ~#!
Func.bOld=*(lpStr+wOffset); NvE}eA#
Func.lOld=*lpLong; 5V[oE\B
*(lpStr+wOffset)=0xEA; 'mCe=Y
*lpLong=Func.lpFarProcReplace; 2=0DCF;Bv
GlobalUnlock(hMemData); A,-6|&F
MessageBox(NULL,"改为自己的函数","提示",MB_OK); ;a=w5,h:
//将保留的内容改回来 ?PA$Ur21lw
hMemData=AllocCStoDSAlias(hMemCode); K`&oC8p
lpStr=GlobalLock(hMemData); N/YWb y=H
lpLong=(lpStr+wOffset+1 ); 6h?gs"[j
*(lpStr+wOffset)=Func.bOld; CfEmT8sa
*lpLong=Func.lOld; CHd9l]Rbe
GlobalUnlock(hMemData); I3 =#@2
MessageBox(NULL,"改回原Windows函数","提示",MB_OK); 5IOFSy`
return 1; #?MY&hdU9
} JTqDr
_iKq~\v2
//自己的替代函数 HD,xY4q&N
.Ig+Dj{)
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECT FAR* +h^jC9,m~{
lpRect, LPCSTR lpStr, UINT nInt2, int FAR* lpInt) 3P~o"a>
{
j1?j6s
BYTE NameDot[96]= T J^u"j-'
{ -50HB`t
0x09, 0x00, 0xfd, 0x08, 0x09, 0x08, 0x09, 0x10, 0x09, 0x20, *D4hq=
0x79, 0x40, 0x41, 0x04, 0x47, 0xfe, 0x41, 0x40, 0x79, 0x40, V6$xcAE"</
0x09, 0x20, 0x09, 0x20, 0x09, 0x10, 0x09, 0x4e, 0x51, 0x84, 0`.^MC?
0x21, 0x00, 0x02, 0x00, 0x01, 0x04, 0xff, 0xfe, 0x00, 0x00, ^m#-9- `
0x1f, 0xf0, 0x10, 0x10, 0x10, 0x10, 0x1f, 0xf0, 0x00, 0x00, R_]{2~J+
0x7f, 0xfc, 0x40, 0x04, 0x4f, 0xe4, 0x48, 0x24, 0x48, 0x24, iUMY!eqp
0x4f, 0xe4, 0x40, 0x0c, 0x10, 0x80, 0x10, 0xfc, 0x10, 0x88, K/m3
0x11, 0x50, 0x56, 0x20, 0x54, 0xd8, 0x57, 0x06, 0x54, 0x20, VUTacA Y>L
0x55, 0xfc, 0x54, 0x20, 0x55, 0xfc, 0x5c, 0x20, 0x67, 0xfe, ?7:KphFX)
0x00, 0x20, 0x00, 0x20, 0x00, 0x20 mS>xGtD&K
}; -aRU]kIf
:.(;<b<\
HBITMAP hBitmap,hOldBitmap; uZa9zs=}c
HDC hMemDC; YzosZ! L!<
BYTE far *lpDot; dpQG[vXe
int i; { pu85'DV
for ( i=0;i<3;i++ ) ERwHLA
{ V^y^
;0I}[
lpDot=(LPSTR)NameDot+i*32; ')a(.f
hMemDC=CreateCompatibleDC(hDC); 5vo.[^ty
hBitmap=CreateBitmap(16,16,1,1,lpDot); j.a`N2]WE
SetBitmapBits(hBitmap,32L,lpDot); jA".r'D%
hOldBitmap=SelectObject(hMemDC,hBitmap); ZnFi<@UB)
BitBlt(hDC,x+i*16,y,16,16,hMemDC,0,0,SRCCOPY); }nt*
[:%
DeleteDC(hMemDC); wIkN9
f
DeleteObject(hBitmap); }(a+aHH
} O/:UJ( e{
return TRUE; )%rg?lI
} G;>
_<22
*"9><lJ-!
//模块定义文件 relocate.def 6cqP2!~
bNT9 H`P
NAME RELOCATE l1ZY1#%j
EXETYPE WINDOWS PcB_oG g
CODE PRELOAD MOVEABLE DISCARDABLE f>BWG`
DATA PRELOAD MOVEABLE MULTIPLE
F4=}}kU
HEAPSIZE 1024 |+ N5z
EXPORTS ) 9,
ys_`e
五、结束语 B1]bRxwn?
本文从原理上分析了称为"陷阱"技术的动态汉化Windows方法,介绍了将任一Windows函数调用改向到自己指定函数处的通用方法,这种方法可以拓展到其它应用中,如多语种显示、不同内码制式的切换显示等。