"陷阱"技术探秘──动态汉化Windows技术的分析 9ls<Y
= !D<1<
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。 H?8uy_Sc
*LJN2;
一、发现了什么? BBw]>*
笔者多年来一直从事Windows下的软件开发工作,经历了Windows 2.0 、 3.0 、3.1 ,直至Windows 95、NT的成长过程,也遍历了长青窗口、长城窗口、DBWin、CStar、RichWin等多个Windows汉化产品。从现在看来,影响最大也最为成功的,当推四通利方的RichWin;此外,中文之星CStar与RichWin师出一门,其核心技术自然也差不多。其对外宣传采用独特的"陷阱" 技术即动态修改Windows代码,一直是笔者感兴趣的地方。 'qBg^c
EXEHDR是Microsoft Visual C++开发工具中很有用的一个程序,它可以检查NE(New-Exe cutable)格式文件,用它来分析RichWin的WSENGINE.DLL或CStar的CHINESE.DLL,就会发现与众不同的两点(以CStar 1.20为例): -05zcIVo
,X6.p
C:\CSTAR>exehdr chinese.dll /v DmAMr=p
.................................. vGWX= O
Y604peUF
6 type offset target k!E`Xeob
BASE 060a seg 2 offset 0000 d#7 z
N
PTR 047e imp GDI.GETCHARABCWIDTHS +:w9K!31-
PTR 059b imp GDI.ENUMFONTFAMILIES ?}^e,.M0?s
PTR 0451 imp DISPLAY.14 ( EXTTEXTOUT ) %)_R>. >
PTR 0415 imp KEYBOARD.4 ( TOASCII ) Pz3jc|Ga
PTR 04ba imp KEYBOARD.5 ( ANSITOOEM ) :,<e
PTR 04c9 imp KEYBOARD.6 ( OEMTOANSI ) _QCspPT' c
PTR 04d8 imp KEYBOARD.134( ANSITOOEMBUFF ) ,vP9oY[n
PTR 05f5 imp USER.430 ( LSTRCMP ) G`E%uyjG$j
PTR 04e7 imp KEYBOARD.135( OEMTOANSIBUFF ) E@QsuS2&
PTR 0514 imp USER.431 ( ANSIUPPER ) }8 A]
PTR 0523 imp USER.432 ( ANSILOWER ) drTX
PTR 05aa imp GDI.56 ( CREATEFONT ) -Zfzl`r
PTR 056e imp USER.433 ( ISCHARALPHA ) " ^~f.N
PTR 05b9 imp GDI.57 ( CREATEFONTINDIRECT ) Bt|S!tEy
PTR 057d imp USER.434 ( ISCHARALPHANUMERIC ) z<_{m4I;
PTR 049c imp USER.179 ( GETSYSTEMMETRICS ) EOhUr=5~
PTR 0550 imp USER.435 ( ISCHARUPPER ) b8)>:F
PTR 055f imp USER.436 ( ISCHARLOWER ) %tM]|!yw
PTR 0532 imp USER.437 ( ANSIUPPERBUFF ) H@2JL.(k
PTR 0541 imp USER.438 ( ANSILOWERBUFF ) /Kb7#uq
PTR 05c8 imp GDI.69 ( DELETEOBJECT ) SFKW"cP
PTR 058c imp GDI.70 ( ENUMFONTS ) e#L/
PTR 04ab imp KERNEL.ISDBCSLEADBYTE 7dI+aJ
PTR 05d7 imp GDI.82 ( GETOBJECT ) Sj{z
PTR 048d imp KERNEL.74 ( OPENFILE ) ;<0Q<0G
PTR 0460 imp GDI.91 ( GETTEXTEXTENT ) bnLvJ]i)
PTR 05e6 imp GDI.92 ( GETTEXTFACE ) 5{qFKo"g@,
PTR 046f imp GDI.350 ( GETCHARWIDTH ) [r_,BH\nu
PTR 0442 imp GDI.351 ( EXTTEXTOUT ) m *8[I
PTR 0604 imp USER.471 ( LSTRCMPI ) O?NAbxkp
PTR 04f6 imp USER.472 ( ANSINEXT ) @u3K.}i:g
PTR 0505 imp USER.473 ( ANSIPREV ) |0n h
PTR 0424 imp USER.108 ( GETMESSAGE ) l epR}
PTR 0433 imp USER.109 ( PEEKMESSAGE ) Y~RPspHW
n5"rSgUtE
35 relocations %*]3j^b Q+
%YefTk8cr,
(括号内为笔者加上的对应Windows API函数。) uc~PKU?tO
第一,在数据段中,发现了重定位信息。 D8slSX`6j
第二,这些重定位信息提示的函数,全都与文字显示输出和键盘、字符串有关。也就是说汉化Windows,必须修改这些函数。 O-:#Q(H!
在这非常特殊的地方,隐藏着什么呢?毋庸置疑,这与众不同的两点,对打开"陷阱"技术之门而言,不是金钥匙,也是敲门砖。 C/%umazP9
ftsr-3!Vm
二、Windows的模块调用机制与重定位概念 j y{T=Nb
为了深入探究"陷阱"技术,我们先来介绍Windows的模块调用机制。 x,
a[ p\1
Windows的运行分实模式、标准模式和增强模式三种,虽然这几种模式各不相同,但其核心模块的调用关系却是完全一致的。 95^w" [}4Q
主要的三个模块,有如下的关系: h";G vjy
·KERNEL是Windows系统内核,它不依赖其它模块。 Wfkm'BnV
·GDI是Windows图形设备接口模块,它依赖于KERNEL模块。 2S}%r4$n}
·USER是Windows用户接口服务模块,它依赖于KERNEL、GDI模块及设备驱动程序等所有模块。 mIq6\c$
这三个模块,实际上就是Windows的三个动态链接库。KERNEL有三种系统存在形式:Kern el.exe(实模式)、Krnl286.exe(标准模式)、Krnl386.exe(386增强模式);GDI模块是Gdi.ex e;USER模块是User.exe。虽然文件名都以EXE为扩展名,但它们实际都是动态链接库。同时,几乎所有的API函数都隐藏在这三个模块中。用EXEHDR对这三个模块分析,就可列出一大堆大家所熟悉的Windows API函数。 ZN5\lon|Y
以GDI模块为例,运行结果如下: laqKP+G
C:\WINDOWS\SYSTEM>exehdr gdi.exe |{cdXbr
Hk8:7"4Q
Exports: F6Z l#eL
KbVV[ *
rd seg offset name MGX %U6
............ x_{ua0BLDf
351 1 923e EXTTEXTOUT exported, shared data z.oDH<1
56 3 19e1 CREATEFONT exported, shared data cqr!*
............ #wbaRx@rc
Wcn3\v6_
至此,读者已能从Windows纷繁复杂的系统中理出一些头续来。下面,再引入一个重要概念——重定位。 Y&`Vs(
一个Windows执行程序对调用API函数或对其它动态库的调用,在程序装入内存前,都是一些不能定位的动态链接;当程序调入内存时,这些远调用都需要重新定位,重新定位的依据就是重定位表。在Windows执行程序(包括动态库)的每个段后面,通常都跟有这样一个重定位表。重定位包含调用函数所在模块、函数序列号以及定位在模块中的位置。 $bh2zKB)
例如,用EXEHDR /v 分析CHINESE.DLL得到: ~;#J&V@D
6 type offset target %yJL-6U
{4ON2{8;4
.......... C ,z7f"
b,/fz6
{N
PTR 0442 imp GDI.351 ^"K
yAR''>
.......... 0}hN/2}&
fm87?RgXD
就表明,在本段的0442H偏移处,调用了GDI的第351号函数。如果在0442H处是0000:FFFF ,表示本段内仅此一处调用了GDI.351函数;否则,表明了本段内还有一处调用此函数,调用的位置就是0442H处所指向的内容,实际上重定位表只含有引用位置的链表的链头。那么,GDI. 351是一个什么函数呢?用EXEHDR对GDI.EXE作一分析,就可得出,在GDI的出口(Export)函数中,第351号是ExtTextOut。 3G8BYP
这样,我们在EXEHDR这一简单而非常有用的工具帮助下,已经在Windows的浩瀚海洋中畅游了一会,下面让我们继续深入下去。 DzO0V"+H}k
bmhvC9
三、动态汉化Windows原理 D|9C|q
我们知道,传统的汉化Windows的方法,是要直接修改Windows的显示、输入、打印等模块代码,或用DDK直接开发"中文设备"驱动模块。这样不仅工作量大,而且,系统的完备性很难保证,性能上也有很多限制(早期的长青窗口就是如此),所以只有从内核上修改Windows核心代码才是最彻底的办法。 h=YY>
x
从Windows的模块调用机制,我们可以看到,Windows实际上是由包括在KERNEL、GDI、US ER等几个模块中的众多函数支撑的。那么,修改其中涉及语言文字处理的函数,使之能适应中文需要,不就能达到汉化目的了吗? i68'|4o
因而,我们可以得出这样的结论:在自己的模块中重新编写涉及文字显示、输入的多个函数,然后,将Windows中对这些函数的引用,改向到自己的这些模块中来。修改哪些函数才能完成汉化,这需要深入分析Windows的内部结构,但CHINESE.DLL已明确无误地告诉了我们,在其数据段的重定位表中列出的引用函数,正是CStar修改了的Windows函数!为了验证这一思路, 我们利用RichWin作一核实。 z,}1K!
用EXEHDR分析GDI.EXE,得出ExtTextOut函数在GDI的第一代码段6139H偏移处(不同版本的Windows其所在代码段和偏移可能不一样)。然后,用HelpWalk(也是Microsoft Visual C+ +开发工具中的一个)检查GDI的Code1段,6139H处前5个字节是 B8 FF 05 45 55,经过运行Ri chWin 4.3 for Internet后,再查看同样的地方,已改为 EA 08 08 8F 3D。其实反汇编就知道,这5个字节就是 Jmp 3D8F:0808,而句柄为0x3D8F的模块,用HelpWalk能观察正是RichWin 的WSENGINE.DLL的第一代码段( 模块名为TEXTMAN)。而偏移0808H处 B8 B7 3D 45 55 8B E C 1E,正是一个函数起始的地方,这实际上就是RichWin所重改写的ExtTextOut函数。退出Ri chWin后,再用HelpWalk观察GDI的Code1代码段,一切又恢复正常!这与前面的分析结论完全吻合!那么,下一个关键点就是如何动态修改Windows的函数代码,也就是汉化Windows的核心——"陷阱"技术。 -% PUY(
=A9>Ej/
四、"陷阱"技术 *aS|4M-
讨论"陷阱"技术,还要回到前面的两个发现。发现之二,已能解释为修改的Windows函数,而发现之一却仍是一个迷。 6 +^V
数据段存放的是变量及常量等内容,如果这里面包含有重定位信息,那么,必定要在变量说明中将函数指针赋给一个FARPROC类型的变量,于是,在变量说明中写下: *RUB`tEL
FARPROC FarProcFunc=ExtTextOut; 8,=Ti7_
果然,在自己程序的数据段中也有了重定位信息。这样,当程序调入内存时,变量FarPro cFunc已是函数ExtTextOut的地址了。 4z Af|Je
要直接修改代码段的内容,还遇到一个难题,就是代码段是不可改写的。这时,需要用到一个未公开的Windows函数AllocCStoDSAlias,取得与代码段有相同基址的可写数据段别名, 其函数声明为: EonZvT-D=
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); FIlw
参数是代码段的句柄,返回值是可写数据段别名句柄。 `da6}Vqj:
Windows中函数地址是32位,高字节是其模块的内存句柄,低字节是函数在模块内的偏移。将得到的可写数据段别名句柄锁定,再将函数偏移处的5个字节保留下来,然后将其改为转向替代函数(用 EA Jmp): p9XHYf72
*(lpStr+wOffset) =0xEA; (\.[pj%-O
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。 lZV]Z3=p'0
//源程序 relocate.c e<YC=67n)
+|r;t
#include <WINDOWS.H> lYv :
#include <dos.h> fo&q/;l\
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECTFAR*lpRect,LPCSTR lpStr, UINT nInt2, int FAR* lpInt); !0c7nzjm
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); >BMJA:j
typedef struct tagFUNC zA9N<0[]o
{ 6(B0gBCId
FARPROC lpFarProcReplace; //替代函数地址 9c9-1iS
FARPROC lpFarProcWindows; //Windows函数地址 Q#urx^aw
BYTE bOld; //保存原函数第一字节 IJx dbuKg
LONG lOld; //保存原函数接后的四字节长值 *pw:oTO
}FUNC; rIo`n2
FUNC Func={MyExtTextOut,ExtTextOut}; \% !]qv
//Windows主函数 6g29!F`y
int PASCAL WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,int nCmdShow) Usk@{
{ q`E6hm
HANDLE hMemCode; //代码段句柄 qD7(+a
WORD hMemData; //相同基址的可写数据段别名 (' /S~
WORD wOffset; //函数偏移 39S}/S)
LPSTR lpStr; ii2X7Q
LPLONG lpLong; X|L.fB=
char lpNotice[96]; `hM`bcS
hMemCode=HIWORD((LONG) Func.lpFarProcWindows ); FoWE<
wOffset=LOWORD((LONG) Func.lpFarProcWindows ); 7 ;|jq39
wsprintf(lpNotice,"函数所在模块句柄 0x%4xH,偏移 0x%4xH",hMemCode,wOffset); N'Ywn}!js
MessageBox(NULL,lpNotice,"提示",MB_OK); F0o7XUt
//取与代码段有相同基址的可写数据段别名 MG[?C2KA/
hMemData=AllocCStoDSAlias(hMemCode); g10$pf+L
lpStr=GlobalLock(hMemData); 99G/(Z}
lpLong=(lpStr+wOffset+1 ); Df||#u=n
//保存原函数要替换的头几个字节 m/=,O_
Func.bOld=*(lpStr+wOffset); [{6]i J
Func.lOld=*lpLong; \r^=W=
*(lpStr+wOffset)=0xEA; Sq %BfP)a(
*lpLong=Func.lpFarProcReplace; y7wy9+>l
GlobalUnlock(hMemData); i|Lir{vW
MessageBox(NULL,"改为自己的函数","提示",MB_OK); rl'YyO}2
//将保留的内容改回来 :IV4]`
hMemData=AllocCStoDSAlias(hMemCode); {a `kPfP
lpStr=GlobalLock(hMemData); VvSD&r^qI
lpLong=(lpStr+wOffset+1 ); :RzcK>Gub=
*(lpStr+wOffset)=Func.bOld; ]2QZ47
*lpLong=Func.lOld; o B_c6]K
GlobalUnlock(hMemData); Se*ZQtwE
MessageBox(NULL,"改回原Windows函数","提示",MB_OK); ipjl[
return 1; LT!.M m
} kGc;j8>."
K_ Y0;!W
//自己的替代函数 2U2=ja9:Y
'|':W6m,
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECT FAR* YTL [z:k}
lpRect, LPCSTR lpStr, UINT nInt2, int FAR* lpInt) I"#jSazk
{ {Mp>+e@xx
BYTE NameDot[96]= yC
=5/wy`
{ {G&K_~Vj
0x09, 0x00, 0xfd, 0x08, 0x09, 0x08, 0x09, 0x10, 0x09, 0x20, ~bL(mq
0x79, 0x40, 0x41, 0x04, 0x47, 0xfe, 0x41, 0x40, 0x79, 0x40, 8? W\kf$
0x09, 0x20, 0x09, 0x20, 0x09, 0x10, 0x09, 0x4e, 0x51, 0x84, !9356) cV
0x21, 0x00, 0x02, 0x00, 0x01, 0x04, 0xff, 0xfe, 0x00, 0x00, 6aK'%K
0x1f, 0xf0, 0x10, 0x10, 0x10, 0x10, 0x1f, 0xf0, 0x00, 0x00, !ceuljd]
0x7f, 0xfc, 0x40, 0x04, 0x4f, 0xe4, 0x48, 0x24, 0x48, 0x24, LDBxw
0x4f, 0xe4, 0x40, 0x0c, 0x10, 0x80, 0x10, 0xfc, 0x10, 0x88, [
8N1tZ{`
0x11, 0x50, 0x56, 0x20, 0x54, 0xd8, 0x57, 0x06, 0x54, 0x20, QKCc5
0x55, 0xfc, 0x54, 0x20, 0x55, 0xfc, 0x5c, 0x20, 0x67, 0xfe, jeN_
sm81b
0x00, 0x20, 0x00, 0x20, 0x00, 0x20 ?CA P8 _
}; w:r0>
SLSJn))@!
HBITMAP hBitmap,hOldBitmap; S-gL]r3G8
HDC hMemDC; ?#ndMv!$
BYTE far *lpDot; aN).G1
int i; L;Nz\sJ
for ( i=0;i<3;i++ ) #?}k0Y
{ +I/7eIG?|
lpDot=(LPSTR)NameDot+i*32; ~ d/Doi
hMemDC=CreateCompatibleDC(hDC); $7jJV (B
hBitmap=CreateBitmap(16,16,1,1,lpDot); (+4gq6b
SetBitmapBits(hBitmap,32L,lpDot); zc'!a"
hOldBitmap=SelectObject(hMemDC,hBitmap); %LXk9K^]e
BitBlt(hDC,x+i*16,y,16,16,hMemDC,0,0,SRCCOPY); t&mw@bj
DeleteDC(hMemDC); Z7JI4"
DeleteObject(hBitmap); +NxEx/{
} llhJ,wD
return TRUE; (nbqL+
} _I<eJ\
[ k^6#TQcn
//模块定义文件 relocate.def $bF.6
8yOzD
NAME RELOCATE JiDX|Q<c
EXETYPE WINDOWS kFHq QsaG
CODE PRELOAD MOVEABLE DISCARDABLE /e|`mu%
DATA PRELOAD MOVEABLE MULTIPLE 1FjA
HEAPSIZE 1024 N12K*P[!
EXPORTS 702&E(rx,
NVS U)#
五、结束语 )$P!7$C-
本文从原理上分析了称为"陷阱"技术的动态汉化Windows方法,介绍了将任一Windows函数调用改向到自己指定函数处的通用方法,这种方法可以拓展到其它应用中,如多语种显示、不同内码制式的切换显示等。