"陷阱"技术探秘──动态汉化Windows技术的分析 /f6]XP\'`+
&FZe LIt
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。 z)]EB6uRg
TY#1Z )%
一、发现了什么? N%_~cR;
笔者多年来一直从事Windows下的软件开发工作,经历了Windows 2.0 、 3.0 、3.1 ,直至Windows 95、NT的成长过程,也遍历了长青窗口、长城窗口、DBWin、CStar、RichWin等多个Windows汉化产品。从现在看来,影响最大也最为成功的,当推四通利方的RichWin;此外,中文之星CStar与RichWin师出一门,其核心技术自然也差不多。其对外宣传采用独特的"陷阱" 技术即动态修改Windows代码,一直是笔者感兴趣的地方。 Y7jD:P
EXEHDR是Microsoft Visual C++开发工具中很有用的一个程序,它可以检查NE(New-Exe cutable)格式文件,用它来分析RichWin的WSENGINE.DLL或CStar的CHINESE.DLL,就会发现与众不同的两点(以CStar 1.20为例): (la
txgGL'
C:\CSTAR>exehdr chinese.dll /v DRzpV6s
.................................. CTI(Kh+
K8+b\k4E
6 type offset target ^y3\e
BASE 060a seg 2 offset 0000 #k"[TCQ>
PTR 047e imp GDI.GETCHARABCWIDTHS (
ou:"Y
PTR 059b imp GDI.ENUMFONTFAMILIES sXydMk`J
PTR 0451 imp DISPLAY.14 ( EXTTEXTOUT ) Bdg*XfXXk
PTR 0415 imp KEYBOARD.4 ( TOASCII ) M84LbgGM%
PTR 04ba imp KEYBOARD.5 ( ANSITOOEM ) 2h:f6=)r/u
PTR 04c9 imp KEYBOARD.6 ( OEMTOANSI ) 05zHL j
PTR 04d8 imp KEYBOARD.134( ANSITOOEMBUFF ) ~XxD[T5
PTR 05f5 imp USER.430 ( LSTRCMP ) C=m Y
PTR 04e7 imp KEYBOARD.135( OEMTOANSIBUFF ) D-~Jj&7
PTR 0514 imp USER.431 ( ANSIUPPER )
b:3hKW
PTR 0523 imp USER.432 ( ANSILOWER ) zk/!#5JtK
PTR 05aa imp GDI.56 ( CREATEFONT ) $e;!nI;z
PTR 056e imp USER.433 ( ISCHARALPHA ) *.+>ur?t
PTR 05b9 imp GDI.57 ( CREATEFONTINDIRECT ) QP;b\11m
PTR 057d imp USER.434 ( ISCHARALPHANUMERIC ) mvL'l)
PTR 049c imp USER.179 ( GETSYSTEMMETRICS ) B>]5/!_4
PTR 0550 imp USER.435 ( ISCHARUPPER ) z84W{!
P
PTR 055f imp USER.436 ( ISCHARLOWER ) h1kPsgzR
PTR 0532 imp USER.437 ( ANSIUPPERBUFF ) |l?ALP_g
PTR 0541 imp USER.438 ( ANSILOWERBUFF ) C0fA3y72
PTR 05c8 imp GDI.69 ( DELETEOBJECT ) $%E9^F
PTR 058c imp GDI.70 ( ENUMFONTS ) ,mX|TI<*
PTR 04ab imp KERNEL.ISDBCSLEADBYTE Q* 4q3B&
PTR 05d7 imp GDI.82 ( GETOBJECT ) czb%%:EJs|
PTR 048d imp KERNEL.74 ( OPENFILE ) f|G7L5-
PTR 0460 imp GDI.91 ( GETTEXTEXTENT ) %%Kg'{-:
PTR 05e6 imp GDI.92 ( GETTEXTFACE ) Ly<;x^D
PTR 046f imp GDI.350 ( GETCHARWIDTH ) X
or ,}. w
PTR 0442 imp GDI.351 ( EXTTEXTOUT ) I L=v[)en4
PTR 0604 imp USER.471 ( LSTRCMPI ) Gzfb|9,q
PTR 04f6 imp USER.472 ( ANSINEXT ) R] [M_ r
PTR 0505 imp USER.473 ( ANSIPREV ) hHg
gH4T
PTR 0424 imp USER.108 ( GETMESSAGE ) &59#$LyH`%
PTR 0433 imp USER.109 ( PEEKMESSAGE ) 6^aYW#O<Ua
*~cs8<.!1
35 relocations e>>G4g
ICTtubjV"
(括号内为笔者加上的对应Windows API函数。) bSR<d
第一,在数据段中,发现了重定位信息。 '; dW'Uwc
第二,这些重定位信息提示的函数,全都与文字显示输出和键盘、字符串有关。也就是说汉化Windows,必须修改这些函数。 E5t+;vL~
在这非常特殊的地方,隐藏着什么呢?毋庸置疑,这与众不同的两点,对打开"陷阱"技术之门而言,不是金钥匙,也是敲门砖。 1;xw)65
"^=[*i
二、Windows的模块调用机制与重定位概念 9e)+<H
为了深入探究"陷阱"技术,我们先来介绍Windows的模块调用机制。 d-<y'GYw
Windows的运行分实模式、标准模式和增强模式三种,虽然这几种模式各不相同,但其核心模块的调用关系却是完全一致的。 h.9Lh ;j
主要的三个模块,有如下的关系: oe*&w9Y}&
·KERNEL是Windows系统内核,它不依赖其它模块。 yki
k4MeB
·GDI是Windows图形设备接口模块,它依赖于KERNEL模块。 IX*S:7S[
·USER是Windows用户接口服务模块,它依赖于KERNEL、GDI模块及设备驱动程序等所有模块。 ~fF}
这三个模块,实际上就是Windows的三个动态链接库。KERNEL有三种系统存在形式:Kern el.exe(实模式)、Krnl286.exe(标准模式)、Krnl386.exe(386增强模式);GDI模块是Gdi.ex e;USER模块是User.exe。虽然文件名都以EXE为扩展名,但它们实际都是动态链接库。同时,几乎所有的API函数都隐藏在这三个模块中。用EXEHDR对这三个模块分析,就可列出一大堆大家所熟悉的Windows API函数。 \O8f~zA{G
以GDI模块为例,运行结果如下: mc+wRx
C:\WINDOWS\SYSTEM>exehdr gdi.exe GufP[|7b-
R>U<8z"i
Exports: sKuTG93sr@
9v
F2aLPk
rd seg offset name ,1[??Y
............ 3.0c/v5Go
351 1 923e EXTTEXTOUT exported, shared data )c '>E4>
56 3 19e1 CREATEFONT exported, shared data {e%abr_B
............ ThlJhTh<%4
Q kZM(pG
至此,读者已能从Windows纷繁复杂的系统中理出一些头续来。下面,再引入一个重要概念——重定位。 eE{L>u
一个Windows执行程序对调用API函数或对其它动态库的调用,在程序装入内存前,都是一些不能定位的动态链接;当程序调入内存时,这些远调用都需要重新定位,重新定位的依据就是重定位表。在Windows执行程序(包括动态库)的每个段后面,通常都跟有这样一个重定位表。重定位包含调用函数所在模块、函数序列号以及定位在模块中的位置。 :.Qe=}9
例如,用EXEHDR /v 分析CHINESE.DLL得到: sBb.Y
k
6 type offset target 1a$V{Eag
5y3TlR
.......... Crhi+D
/8MQqZ C
PTR 0442 imp GDI.351 #VV.[N
$048y
X 7M
.......... KYu(H[a
Y+
Z9IiS7
就表明,在本段的0442H偏移处,调用了GDI的第351号函数。如果在0442H处是0000:FFFF ,表示本段内仅此一处调用了GDI.351函数;否则,表明了本段内还有一处调用此函数,调用的位置就是0442H处所指向的内容,实际上重定位表只含有引用位置的链表的链头。那么,GDI. 351是一个什么函数呢?用EXEHDR对GDI.EXE作一分析,就可得出,在GDI的出口(Export)函数中,第351号是ExtTextOut。 $
tNhwF
这样,我们在EXEHDR这一简单而非常有用的工具帮助下,已经在Windows的浩瀚海洋中畅游了一会,下面让我们继续深入下去。 "k<:a2R
M&ij[%i
三、动态汉化Windows原理 ]jb4Z
我们知道,传统的汉化Windows的方法,是要直接修改Windows的显示、输入、打印等模块代码,或用DDK直接开发"中文设备"驱动模块。这样不仅工作量大,而且,系统的完备性很难保证,性能上也有很多限制(早期的长青窗口就是如此),所以只有从内核上修改Windows核心代码才是最彻底的办法。 k2uiu
从Windows的模块调用机制,我们可以看到,Windows实际上是由包括在KERNEL、GDI、US ER等几个模块中的众多函数支撑的。那么,修改其中涉及语言文字处理的函数,使之能适应中文需要,不就能达到汉化目的了吗?
U+"=
因而,我们可以得出这样的结论:在自己的模块中重新编写涉及文字显示、输入的多个函数,然后,将Windows中对这些函数的引用,改向到自己的这些模块中来。修改哪些函数才能完成汉化,这需要深入分析Windows的内部结构,但CHINESE.DLL已明确无误地告诉了我们,在其数据段的重定位表中列出的引用函数,正是CStar修改了的Windows函数!为了验证这一思路, 我们利用RichWin作一核实。 `zp2;]W
用EXEHDR分析GDI.EXE,得出ExtTextOut函数在GDI的第一代码段6139H偏移处(不同版本的Windows其所在代码段和偏移可能不一样)。然后,用HelpWalk(也是Microsoft Visual C+ +开发工具中的一个)检查GDI的Code1段,6139H处前5个字节是 B8 FF 05 45 55,经过运行Ri chWin 4.3 for Internet后,再查看同样的地方,已改为 EA 08 08 8F 3D。其实反汇编就知道,这5个字节就是 Jmp 3D8F:0808,而句柄为0x3D8F的模块,用HelpWalk能观察正是RichWin 的WSENGINE.DLL的第一代码段( 模块名为TEXTMAN)。而偏移0808H处 B8 B7 3D 45 55 8B E C 1E,正是一个函数起始的地方,这实际上就是RichWin所重改写的ExtTextOut函数。退出Ri chWin后,再用HelpWalk观察GDI的Code1代码段,一切又恢复正常!这与前面的分析结论完全吻合!那么,下一个关键点就是如何动态修改Windows的函数代码,也就是汉化Windows的核心——"陷阱"技术。 MH.,s@
bXH^Bm
四、"陷阱"技术 0#[f2X62B
讨论"陷阱"技术,还要回到前面的两个发现。发现之二,已能解释为修改的Windows函数,而发现之一却仍是一个迷。 !ix<|F5
数据段存放的是变量及常量等内容,如果这里面包含有重定位信息,那么,必定要在变量说明中将函数指针赋给一个FARPROC类型的变量,于是,在变量说明中写下: Di'u%r
FARPROC FarProcFunc=ExtTextOut; p}A4K#G
果然,在自己程序的数据段中也有了重定位信息。这样,当程序调入内存时,变量FarPro cFunc已是函数ExtTextOut的地址了。 dT)KvqX
要直接修改代码段的内容,还遇到一个难题,就是代码段是不可改写的。这时,需要用到一个未公开的Windows函数AllocCStoDSAlias,取得与代码段有相同基址的可写数据段别名, 其函数声明为: eM+;x\jo?
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); -z0{\=@#m
参数是代码段的句柄,返回值是可写数据段别名句柄。 ?a>7=)%AH
Windows中函数地址是32位,高字节是其模块的内存句柄,低字节是函数在模块内的偏移。将得到的可写数据段别名句柄锁定,再将函数偏移处的5个字节保留下来,然后将其改为转向替代函数(用 EA Jmp): @5jG
*(lpStr+wOffset) =0xEA; B#6pQp$
四通利方(RichWin)、中文之星(CStar)是大家广为熟知的汉化Windows产品,"陷阱"技术即动态修改Windows代码,一直是其对外宣称的过人技术。本文从Windows的模块调用机制与重定位概念着手,介绍了"陷阱"技术的实现,并给出了采用"陷阱"技术动态修改Windows代码的示例源程序。 G\+nWvV7
//源程序 relocate.c L{LU@.;1
S%X\,N
#include <WINDOWS.H> MXF"F:-Kn
#include <dos.h> H~|%vjH
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECTFAR*lpRect,LPCSTR lpStr, UINT nInt2, int FAR* lpInt); ARdGh_yJ&
WORD FAR PASCAL AllocCStoDSAlias(WORD code_sel); FMdLkyK;
typedef struct tagFUNC %p2x^air
{ x"8ey|@&,
FARPROC lpFarProcReplace; //替代函数地址 pfZ,t<bE2
FARPROC lpFarProcWindows; //Windows函数地址 vif8{S
BYTE bOld; //保存原函数第一字节 A<Z5
LONG lOld; //保存原函数接后的四字节长值 e4Ox`gLa*p
}FUNC; ^dnz=FB
FUNC Func={MyExtTextOut,ExtTextOut}; s!'A\nVV1$
//Windows主函数 [u9JL3
int PASCAL WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,int nCmdShow) !049K!rP{
{ `SjD/vNE
HANDLE hMemCode; //代码段句柄 [b.'3a++
WORD hMemData; //相同基址的可写数据段别名 Yb\\
w<@g
WORD wOffset; //函数偏移 9J7J/]7f
LPSTR lpStr; "b>KUzuYT
LPLONG lpLong; d%lHa??/h
char lpNotice[96]; =*g$#l4
hMemCode=HIWORD((LONG) Func.lpFarProcWindows ); l}0V+
wOffset=LOWORD((LONG) Func.lpFarProcWindows ); +F o$o
wsprintf(lpNotice,"函数所在模块句柄 0x%4xH,偏移 0x%4xH",hMemCode,wOffset); }utNZhJ
MessageBox(NULL,lpNotice,"提示",MB_OK); V`\f+Uu
//取与代码段有相同基址的可写数据段别名
`cP'~OT
hMemData=AllocCStoDSAlias(hMemCode); E ;!<Z4
lpStr=GlobalLock(hMemData); *?bk?*?s
lpLong=(lpStr+wOffset+1 ); =kb6xmB^t
//保存原函数要替换的头几个字节 M7DLs;sD
Func.bOld=*(lpStr+wOffset); %A62xnX
Func.lOld=*lpLong; #<wpSs
*(lpStr+wOffset)=0xEA; DMQNr(w{!2
*lpLong=Func.lpFarProcReplace; (~Uel1~@
GlobalUnlock(hMemData); rocB"0
MessageBox(NULL,"改为自己的函数","提示",MB_OK); (.,'}+1
//将保留的内容改回来 rMHQzQ0%
hMemData=AllocCStoDSAlias(hMemCode); *NW QmC~
lpStr=GlobalLock(hMemData); ;4G\]%c)E{
lpLong=(lpStr+wOffset+1 ); t@(9ga(
*(lpStr+wOffset)=Func.bOld; 9Yl8ndP^E
*lpLong=Func.lOld; /S]:dDY9K
GlobalUnlock(hMemData); [vWkAJ'K
MessageBox(NULL,"改回原Windows函数","提示",MB_OK); `pi-zE)
return 1; t0bhXFaiE
} abo>_"9-
sm;E2BR$
`
//自己的替代函数 QtY hg$K3
b0YiQjS6>
BOOL WINAPI MyExtTextOut(HDC hDC, int x, int y, UINT nInt1, const RECT FAR* nuSN)}b<Q
lpRect, LPCSTR lpStr, UINT nInt2, int FAR* lpInt) %i$M/C" (
{ -XVEV
BYTE NameDot[96]= !ww:O| 0
{ j /H>0^
0x09, 0x00, 0xfd, 0x08, 0x09, 0x08, 0x09, 0x10, 0x09, 0x20, c6,s+^^
0x79, 0x40, 0x41, 0x04, 0x47, 0xfe, 0x41, 0x40, 0x79, 0x40, l
Io9,Ke
0x09, 0x20, 0x09, 0x20, 0x09, 0x10, 0x09, 0x4e, 0x51, 0x84, A<SOT >m]
0x21, 0x00, 0x02, 0x00, 0x01, 0x04, 0xff, 0xfe, 0x00, 0x00, d1V^2Hb?
0x1f, 0xf0, 0x10, 0x10, 0x10, 0x10, 0x1f, 0xf0, 0x00, 0x00, 5L-lpT8P
0x7f, 0xfc, 0x40, 0x04, 0x4f, 0xe4, 0x48, 0x24, 0x48, 0x24, [0u.}c;(
0x4f, 0xe4, 0x40, 0x0c, 0x10, 0x80, 0x10, 0xfc, 0x10, 0x88, EmX>T>~#D
0x11, 0x50, 0x56, 0x20, 0x54, 0xd8, 0x57, 0x06, 0x54, 0x20, 9zZ5Lr^21
0x55, 0xfc, 0x54, 0x20, 0x55, 0xfc, 0x5c, 0x20, 0x67, 0xfe, 8QVE_ Eu
0x00, 0x20, 0x00, 0x20, 0x00, 0x20 StU 4{
}; mDQEXMD
rGnI( m.
HBITMAP hBitmap,hOldBitmap; [1b6#I"x
HDC hMemDC;
u>}w-
BYTE far *lpDot; U g}8y8
int i; !/Iq{2LX
for ( i=0;i<3;i++ ) 0]T.Lh$3
{ rQ~ \~g[tP
lpDot=(LPSTR)NameDot+i*32; 1BQ0M{&
hMemDC=CreateCompatibleDC(hDC); ItI0x
hBitmap=CreateBitmap(16,16,1,1,lpDot); +@emX$cFV
SetBitmapBits(hBitmap,32L,lpDot); ME$2P!o
hOldBitmap=SelectObject(hMemDC,hBitmap); A*8m8Sh$
BitBlt(hDC,x+i*16,y,16,16,hMemDC,0,0,SRCCOPY); YDQ:eebg(
DeleteDC(hMemDC); gA~20LSt
DeleteObject(hBitmap); K(nS$x1G
} M{?zvq?d
return TRUE; DX}B0B
} TGU:(J'^
R_Zv'y6
//模块定义文件 relocate.def w9RF2J
#NvQmz?J?
NAME RELOCATE bTLMd$
EXETYPE WINDOWS FXP6zHsV
CODE PRELOAD MOVEABLE DISCARDABLE b?_e+:\UV
DATA PRELOAD MOVEABLE MULTIPLE {=UFk-$=
HEAPSIZE 1024 h+,'B&=|_
EXPORTS d_Q*$Iz)3
#zON_[+s9
五、结束语 qWsylC23
本文从原理上分析了称为"陷阱"技术的动态汉化Windows方法,介绍了将任一Windows函数调用改向到自己指定函数处的通用方法,这种方法可以拓展到其它应用中,如多语种显示、不同内码制式的切换显示等。