五、回溯法 _7M! b9oA
hIr$^%
回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。 mzX <!
1、回溯法的一般描述 l6S6Y
可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。 &PAgab2$
解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。 %V CfcM}5I
我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<i)元组(x1,x2,…,xj)一定也满足D中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反D中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反D中仅涉及到x1,x2,…,xi的一个约束,n≥i>j。因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。 1xkU;no
回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。树T类似于检索树,它可以这样构造: #1C~i}J1
设Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。从根开始,让T的第I层的每一个结点都有mi个儿子。这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。另外,对于任意的0≤i≤n-1,E中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。特别,E中的任意一个n元组的空前缀(),对应于T的根。 9C{\=?e;
因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I元组(x1,x2,…,xi),…,直到i=n为止。 3koXM_4_{)
在回溯法中,上述引入的树被称为问题P的状态空间树;树T上任意一个结点被称为问题P的状态结点;树T上的任意一个叶子结点被称为问题P的一个解状态结点;树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P的一个解。 3oCw(Ff
【问题】 组合问题 ",
:Ta|
问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。 M:~/e8Xv
例如n=5,r=3的所有组合为: ;5.o;|w?!
(1)1、2、3 (2)1、2、4 (3)1、2、5 6!3Jr
(4)1、3、4 (5)1、3、5 (6)1、4、5 I:qfB2tL)O
(7)2、3、4 (8)2、3、5 (9)2、4、5 n6a*|rE
(10)3、4、5 T"GuE[?a
则该问题的状态空间为: /@H2m\vBX
E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5} joN}N }U
约束集为: x1<x2<x3 Z{w{bf1&A
显然该约束集具有完备性。 "k${5wk#Fl
yeCR{{B/'
<9s=K\-
2、回溯法的方法 f2#9E+IQ
对于具有完备约束集D的一般问题P及其相应的状态空间树T,利用T的层次结构和D的完备性,在T中搜索问题P的所有解的回溯法可以形象地描述为: cc%O35o
从T的根出发,按深度优先的策略,系统地搜索以其为根的子树中可能包含着回答结点的所有状态结点,而跳过对肯定不含回答结点的所有子树的搜索,以提高搜索效率。具体地说,当搜索按深度优先策略到达一个满足D中所有有关约束的状态结点时,即“激活”该状态结点,以便继续往深层搜索;否则跳过对以该状态结点为根的子树的搜索,而一边逐层地向该状态结点的祖先结点回溯,一边“杀死”其儿子结点已被搜索遍的祖先结点,直到遇到其儿子结点未被搜索遍的祖先结点,即转向其未被搜索的一个儿子结点继续搜索。 ($oO,
c'z
在搜索过程中,只要所激活的状态结点又满足终结条件,那么它就是回答结点,应该把它输出或保存。由于在回溯法求解问题时,一般要求出问题的所有解,因此在得到回答结点后,同时也要进行回溯,以便得到问题的其他解,直至回溯到T的根且根的所有儿子结点均已被搜索过为止。 4P>tGO&*x
例如在组合问题中,从T的根出发深度优先遍历该树。当遍历到结点(1,2)时,虽然它满足约束条件,但还不是回答结点,则应继续深度遍历;当遍历到叶子结点(1,2,5)时,由于它已是一个回答结点,则保存(或输出)该结点,并回溯到其双亲结点,继续深度遍历;当遍历到结点(1,5)时,由于它已是叶子结点,但不满足约束条件,故也需回溯。 Uq,M\V\
3、回溯法的一般流程和技术 N&0MA
在用回溯法求解有关问题的过程中,一般是一边建树,一边遍历该树。在回溯法中我们一般采用非递归方法。下面,我们给出回溯法的非递归算法的一般流程: Vd{h|=J
#NVqS5
在用回溯法求解问题,也即在遍历状态空间树的过程中,如果采用非递归方法,则我们一般要用到栈的数据结构。这时,不仅可以用栈来表示正在遍历的树的结点,而且可以很方便地表示建立孩子结点和回溯过程。 ] _/d
例如在组合问题中,我们用一个一维数组Stack[ ]表示栈。开始栈空,则表示了树的根结点。如果元素1进栈,则表示建立并遍历(1)结点;这时如果元素2进栈,则表示建立并遍历(1,2)结点;元素3再进栈,则表示建立并遍历(1,2,3)结点。这时可以判断它满足所有约束条件,是问题的一个解,输出(或保存)。这时只要栈顶元素(3)出栈,即表示从结点(1,2,3)回溯到结点(1,2)。 YW}1iT/H
【问题】 组合问题 Iy}r'#N
问题描述:找出从自然数1,2,…,n中任取r个数的所有组合。 $DfaW3bJ
采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质: J\%<.S>
(1) a[i+1]>a,后一个数字比前一个大; .=>T yq
(2) a-i<=n-r+1。 P'Fy,fNg
按回溯法的思想,找解过程可以叙述如下: hao0_9q+
首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一个解。在该解的基础上,选下一个候选解,因a[2]上的3调整为4,以及以后调整为5都满足问题的全部要求,得到解1,2,4和1,2,5。由于对5不能再作调整,就要从a[2]回溯到a[1],这时,a[1]=2,可以调整为3,并向前试探,得到解1,3,4。重复上述向前试探和向后回溯,直至要从a[0]再回溯时,说明已经找完问题的全部解。按上述思想写成程序如下: x Qh?
【程序】 a9E!2o+,
# define MAXN 100 t|X |67W
int a[MAXN]; h]94\XQ>$
void comb(int m,int r) rI:KZ}GZ
{ int i,j; k"P2J}4eO
i=0; O8+[)+6^
a=1; 4JHQ^i-aY
do { Or9@ X=C
if (a-i<=m-r+1 i;0`d0^
{ if (i==r-1) ,<lxq<1I
{ for (j=0;j<r;j++) OU(z};Is6Z
printf(“%4d”,a[j]); ?CS
jn
printf(“\n”); kCR)k=*
} '^l/e: (H3
a++; ]k mOX
continue; gkpNT)
} wYf=(w\c
else L!L/QG|wdf
{ if (i==0) xaerMr
return; wS2iyrIB
a[--i]++; >:]fN61#
} ~zz |U!TG
} while (1) &bJ98Nxl
} k~Pm.@,3o
zJMKgw,i*
main() l\^q7cXG
{ comb(5,3); 'KGY;8<x]
} 4[3T%jA
【问题】 填字游戏 D^PsV
问题描述:在3×3个方格的方阵中要填入数字1到N(N≥10)内的某9个数字,每个方格填一个整数,似的所有相邻两个方格内的两个整数之和为质数。试求出所有满足这个要求的各种数字填法。 +k"dN^K]D
可用试探发找到问题的解,即从第一个方格开始,为当前方格寻找一个合理的整数填入,并在当前位置正确填入后,为下一方格寻找可填入的合理整数。如不能为当前方格找到一个合理的可填证书,就要回退到前一方格,调整前一方格的填入数。当第九个方格也填入合理的整数后,就找到了一个解,将该解输出,并调整第九个的填入的整数,寻找下一个解。 Et'C4od s
为找到一个满足要求的9个数的填法,从还未填一个数开始,按某种顺序(如从小到大的顺序)每次在当前位置填入一个整数,然后检查当前填入的整数是否能满足要求。在满足要求的情况下,继续用同样的方法为下一方格填入整数。如果最近填入的整数不能满足要求,就改变填入的整数。如对当前方格试尽所有可能的整数,都不能满足要求,就得回退到前一方格,并调整前一方格填入的整数。如此重复执行扩展、检查或调整、检查,直到找到一个满足问题要求的解,将解输出。 wN)R !6
回溯法找一个解的算法: kXC.rgal
{ int m=0,ok=1; bE>3D#V<
int n=8; b,a\`%m}
do{ ^+[o+
if (ok) 扩展; 2vnzB8"k
else 调整; .Qh8I+Q%
ok=检查前m个整数填放的合理性; dITnPb)i
} while ((!ok||m!=n)&&(m!=0)) %:o@IRTRU
if (m!=0) 输出解; ](0Vm_es
else 输出无解报告; x#0C+cU
} Jb-wvNJu
如果程序要找全部解,则在将找到的解输出后,应继续调整最后位置上填放的整数,试图去找下一个解。相应的算法如下: x=B+FIJ
回溯法找全部解的算法: =] 5;=>(
{ int m=0,ok=1; <nsl`C~6g0
int n=8; l1cBY{3QD
do{ "|DR"rr'j
if (ok) 9L#B"lh
{ if (m==n) )C2d)(baEJ
{ 输出解; f
5i`B*/
调整; =zA=D.D2
} -R'p^cMA
else 扩展; 7IJb$af:;
} %Z{J=
else 调整; ~v>w%]
ok=检查前m个整数填放的合理性; CHpDzG>]4
} while (m!=0); %,,h )9
} `^J~^Z7Y-
为了确保程序能够终止,调整时必须保证曾被放弃过的填数序列不会再次实验,即要求按某种有许模型生成填数序列。给解的候选者设定一个被检验的顺序,按这个顺序逐一形成候选者并检验。从小到大或从大到小,都是可以采用的方法。如扩展时,先在新位置填入整数1,调整时,找当前候选解中下一个还未被使用过的整数。将上述扩展、调整、检验都编写成程序,细节见以下找全部解的程序。 %Y Rg1UKY
【程序】 0D#!!r ;
# include <stdio.h> &`L5UX
# define N 12 wI}'wALhA
void write(int a[ ]) K=5_jE^e
{ int i,j; 0HD1Ob^@
for (i=0;i<3;i++) 5,AQ~_,'\
{ for (j=0;j<3;j++) _R(5?rG,
printf(“%3d”,a[3*i+j]); p>eD{#2
printf(“\n”); xYu~}kMu
} 6 qKIz{;
scanf(“%*c”); !v;r3*#Nky
} J#V`W&\,6
w78Ius,
int b[N+1]; 3n:<oOV
int a[10]; cHsJQU*K6
int isprime(int m) }2c}y7B,_
{ int i; >!)VkDAG
int primes[ ]={2,3,5,7,11,17,19,23,29,-1};
P)ZSxU
if (m==1||m%2=0) return 0; u
F*cS&'Z
for (i=0;primes>0;i++) ex!^&7Q(
if (m==primes) return 1; ` 4EOy:a
for (i=3;i*i<=m;) z~
u@N9M
{ if (m%i==0) return 0; @I"Aet'XV
i+=2; <uTsXv
} 3X!~*_iC
return 1; hTG
d Uw]
} pO+1?c43
$g$`fR)
int checkmatrix[ ][3]={ {-1},{0,-1},{1,-1},{0,-1},{1,3,-1}, 3+|6])Hi1
{2,4,-1},{3,-1},{4,6,-1},{5,7,-1}}; #6H<JB
int selectnum(int start) pV("NJj!
{ int j; J#x91Jh
for (j=start;j<=N;j++) 'c$9[|x
if (b[j]) return j EhFhL4Xdn
return 0; l.)N
} ~v54$#CB
&HXSO,@
int check(int pos) FY|x<-f
{ int i,j; (x^|
if (pos<0) return 0; =-VV`
for (i=0;(j=checkmatrix[pos])>=0;i++) ONGe/CEXT
if (!isprime(a[pos]+a[j]) mW-@-5Wda
return 0; I(<G;ft<}
return 1; u3. PHZ
} >rFvT>@NU
%9D@W*Z
int extend(int pos) /3TorB~Y
{ a[++pos]=selectnum(1); BkZ%0rw%
b[a][pos]]=0; KncoIw
return pos; 'j)eqoj
} 4a @iR2e
sMS`-,37u
int change(int pos) Gj ^bz'2
{ int j; |wb7`6g
while (pos>=0&&(j=selectnum(a[pos]+1))==0) |fI%L9
b[a[pos--]]=1; ^r& {V"l]
if (pos<0) return –1 ?0(B;[xEJ
b[a[pos]]=1; O^x t
a[pos]=j; *tO<wp&
b[j]=0; B)Q'a3d#
return pos; (;j7{(
} a2rv4d=
#`fT%'T!
void find() |@g1|OWd|
{ int ok=0,pos=0; XGoy#h
a[pos]=1; zc1Zuco|
R
b[a[pos]]=0; OWjZ)f/
do { 8
KkpXaz
if (ok) Vx*q'~4y!|
if (pos==8) h^0mjdSp,
{ write(a); &rd(q'Vi
pos=change(pos); I>5@s;
} $ B9=v
else pos=extend(pos); =@w:
else pos=change(pos); xK r,XZu
ok=check(pos); z )pV$
} while (pos>=0) I7~|!d6
} =z3jFaZ
op-#Ig$#
void main() b
tu:@s8ci
{ int i; vvM)Rb,
for (i=1;i<=N;i++) u
.2sB6}
b=1; 7asq]Y}<
find(); XJzXxhk2
} 0|ps),
【问题】 n皇后问题 ?},ItJ#>)q
问题描述:求出在一个n×n的棋盘上,放置n个不能互相捕捉的国际象棋“皇后”的所有布局。 uJOW%|ZN`
这是来源于国际象棋的一个问题。皇后可以沿着纵横和两条斜线4个方向相互捕捉。如图所示,一个皇后放在棋盘的第4行第3列位置上,则棋盘上凡打“×”的位置上的皇后就能与这个皇后相互捕捉。 .HBvs=i
(6BCFl:/Q<
1 2 3 4 5 6 7 8 *e6|SZ &3
× ×
2 QmUg
× × × ]p!J]YV ]0
× × × }SV3PdE
× × Q × × × × × v/czW\z
× × × fI1;&{f
× × × DOerSh_0W
× × zFtGc
× × OVyy}1Hx
从图中可以得到以下启示:一个合适的解应是在每列、每行上只有一个皇后,且一条斜线上也只有一个皇后。 u,m-6@il
求解过程从空配置开始。在第1列至第m列为合理配置的基础上,再配置第m+1列,直至第n列配置也是合理时,就找到了一个解。接着改变第n列配置,希望获得下一个解。另外,在任一列上,可能有n种配置。开始时配置在第1行,以后改变时,顺次选择第2行、第3行、…、直到第n行。当第n行配置也找不到一个合理的配置时,就要回溯,去改变前一列的配置。得到求解皇后问题的算法如下: 1955(:I
{ 输入棋盘大小值n; JLu0;XVK
m=0; QP B"EW
good=1; MQ*#oVqv
do { DH
!Br
if (good) dNQSbp
if (m==n) vy@Lu
cB
{ 输出解; !_
Q!H2il
改变之,形成下一个候选解; %d0S-.
} aHC;p=RQ\A
else 扩展当前候选接至下一列; AuTplO0_rE
else 改变之,形成下一个候选解; <dL04F
good=检查当前候选解的合理性; k^pu1g=6I
} while (m!=0); >p*HXr|o$
}
j>*SJtq7
在编写程序之前,先确定边式棋盘的数据结构。比较直观的方法是采用一个二维数组,但仔细观察就会发现,这种表示方法给调整候选解及检查其合理性带来困难。更好的方法乃是尽可能直接表示那些常用的信息。对于本题来说,“常用信息”并不是皇后的具体位置,而是“一个皇后是否已经在某行和某条斜线合理地安置好了”。因在某一列上恰好放一个皇后,引入一个一维数组(col[ ]),值col表示在棋盘第i列、col行有一个皇后。例如:col[3]=4,就表示在棋盘的第3列、第4行上有一个皇后。另外,为了使程序在找完了全部解后回溯到最初位置,设定col[0]的初值为0当回溯到第0列时,说明程序已求得全部解,结束程序运行。 $Jm2,Yv
为使程序在检查皇后配置的合理性方面简易方便,引入以下三个工作数组: hPxI&
:N
(1) 数组a[ ],a[k]表示第k行上还没有皇后; `&_k\/
(2) 数组b[ ],b[k]表示第k列右高左低斜线上没有皇后; ge?-^s4M
(3) 数组 c[ ],c[k]表示第k列左高右低斜线上没有皇后; ku;nVV
棋盘中同一右高左低斜线上的方格,他们的行号与列号之和相同;同一左高右低斜线上的方格,他们的行号与列号之差均相同。 l,u{:JC
初始时,所有行和斜线上均没有皇后,从第1列的第1行配置第一个皇后开始,在第m列col[m]行放置了一个合理的皇后后,准备考察第m+1列时,在数组a[ ]、b[ ]和c[ ]中为第m列,col[m]行的位置设定有皇后标志;当从第m列回溯到第m-1列,并准备调整第m-1列的皇后配置时,清除在数组a[ ]、b[ ]和c[ ]中设置的关于第m-1列,col[m-1]行有皇后的标志。一个皇后在m列,col[m]行方格内配置是合理的,由数组a[ ]、b[ ]和c[ ]对应位置的值都为1来确定。细节见以下程序: V@:=}*E
【程序】 ^qqHq
# include <stdio.h> !)3s <{k#
# include <stdlib.h> cf'}*$[S
# define MAXN 20 -mJ&N
int n,m,good; 5{q/z^]
int col[MAXN+1],a[MAXN+1],b[2*MAXN+1],c[2*MAXN+1]; WdqK/s<jM
j#,M@CE
void main() 6B/"M-YME
{ int j; d;SRK @
char awn; l :Nxl
printf(“Enter n: “); scanf(“%d”,&n); z8|9WZ:
for (j=0;j<=n;j++) a[j]=1; 5"am>$rh
for (j=0;j<=2*n;j++) cb[j]=c[j]=1; #U52\3G
m=1; col[1]=1; good=1; col[0]=0; X-$td~r
do { kA<r:/
if (good) <88}+j
if (m==n) t!SQLgA
{ printf(“列\t行”); mzxvfXSF
for (j=1;j<=n;j++) (eG]Cp@
printf(“%3d\t%d\n”,j,col[j]); THgzT\_zq
printf(“Enter a character (Q/q for exit)!\n”); 4sBoD=e
scanf(“%c”,&awn); Kw0V4UF
if (awn==’Q’||awn==’q’) exit(0); 0~b6wuFl
while (col[m]==n) !7`=rT&